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INTRODUCTION 

One "objection" to the use of glass-l ike polymers a s  s t ruc-  

tu ra l  mater ia l s  is their apparently inconsistent behavior with respec t  

to failure. Conditions under which fracture  may be  induced can vary 

. widely and, to the casual observer ,  in an e r r a t i c  way. Probably the 

mos t  disconcerting factor is the ability of polymers to c a r r y  loads 

for some time only, the t ime depending on the magnitude of the load. 

In o r d e r  to bet ter  understand the load carrying ability of such 

viscoelastic mater ia l s ,  i t  is necessary  to study the growth of c racks  

in these mater ia l s .  The p r ime  difficulty in pursuing such studies 

f rom the continuum mechanics viewpoint, is the fact  that many hard 

polymers exhibit not only viscoelastic propert ies  but a lso ra te  or 

t ime sensit ive phenomena reminiscent of metal  yield. Such phenomena 

may be associated either with micros t ruc tura l  decomposition of the 

mater ia l  o r  with geometric changes due to necking. 

Be r ry  (1  ] , Cessna and Sternstein 121 and Kambour i3J a s  

well as one of the authors 143 have shown that the growth of c racks  

in a variety of hard polymers is preceded by considerable "plastic" 

deformations a t  the tip of the crack and contained in a wedge-like 

domain ahead of the c racks ,  as was observed in mild s teel  sheets 

' by Dugdale 151.  It was a l so  shown by Kambour [ 3 ]  that the "yielded" 

mater ia l  a t  the tip of a crack  is "crazed" and of lower density than 

the bulk polymer and fur thermore that the deformation propert ies  of 

the crazed mater ia l  a r e  ra te  sensitive. 

mater ia l s  that exhibit crazing phenomena o r ,  Eo the extent that it is 

We shall  deal he re  only with 

appropriate in the following discussion, with mater ia l s  which produce 

necking in thin s s t ims  during the "yield" process .  Although the l inear 
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theory of viscoelasticity is well understood, there  is very little quan- 

titative knowledge regarding non-linear viscoelasticity o r  viscoplas- 

ticity. However, since we are interested pr imar i ly  in investigating the 

effect of viscoplasticity ra ther  than be bound to preci.se, quantitative 

predictions, we may be so  l iberal  as to accept the viscoplasticity m ~ d e l  

of Crochet [6  ] which contains most  of the qualitative features of what 

one Would expect of a m o r e  complete constitutive formulation. The 

Crochet model attempts to generalize the elastic-plastic s t r e s s - s t r a in  

law by replacing the elastic portion by a l inearly viscoelastic one and 

makes the yield s t r e s s  dependent on the ra te  of deformation during the 

initial, l inearly viscoelastic deformation phase. It turns out that even 

with this relatively simple mater ia l  representation the mathematics of 

the problem become very complicated, and a m o r e  detailed mater ia l  

representation would most  likely lead to mathematical  intractability. 
. 

In this paper we shall  consider the growth Tf a penny-shaped 

crack  in a viscoplastic mater ia l  with special  emphasis on the t ime to 

s t a r t  c rack  propagation af ter  load application, as well as on thc effect 

of load history. The effect of temperature  may be incorporated 

through t ime-temperature  reduction i f  the assumption of thermo- 

rheological simplicity is justified [ 7 ] . Since crack propagation need 

not occur initially with a high r a t e ,  this work attempts to predict  

only a lower bound on failure,  since catastrophic f rac ture  may not 

bccur until a considerable time la ter  1 4 , 8 ] .  Although we shall deal 

in pa r t  with simple viscoelastic mater ia l  representation for mathe- 

matical convenience, the p r ime  purpose of this paper is to elucidate 

the fracture  behavior of mater ia l s  possessing relaxation and c reep  

responses  which span severa l  decades of time. 
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MATERIAL REPRESENTATION AND FAJLURE CRITERION. 

. W e  have stated that the bulk mater ia l  is to be represented by 

a l inear ly  viscoelastic solid. The s t r e s s - s t r a i n  equations for such a 

body a r e  given, under isothermal  conditions, by 

ae(7) 
a7 

t 
s = s  G2( t - r )  - d r  

-00 

where Gl ( t )  and G2(t)  arc  the relaxation moduli in shear  and iso-  

tropic compression respectively,  s and e . .  denote the deviatoric 

par t s  of s t r e s s  and s t ra in  tensors ,  while b . . s  and 5 . . e  a r e  the hydro- 

static par t s  of these tensors.  

i j  1.l 

1J 13 

For  mater ia l s  exhibiting r a t e  o r  load history sensit ive plas- 

ticity Crochet 16 1 suggested a viscoelastic-plastic constitutive 

relation wherein the yield modulus Y depends on the his tory of load- 

ing; i ts  value is given by 

. .  

Y ( t )  = A +  B exp (-Cx) (2 1 

where A, B, C a r e  ma te r i a l  constants, and x is a function, of the 

strain state 

summation being implied by repeated indices; the superscr ip ts  "v" 

and "c" denote the viscoelastic and purely (short- t ime)  elastic com- 

ponents of the strain.  

a s s e i t s  that fas ter  loading corresponds to a higher yield stress, 

For s t r a ins  increasing with t ime equation (2) 
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while under constant s t r e s s  it implies that yield occurs a t  a time 

w'hich is longer the lower the s t r e s s .  

under 'rapid loading 

yield value is given by Y ( o 0 )  A, provided c - c . .  i s  sufficiently 

la rge  as may be the case  for viscoelastic non-linear* polymers. 

Fo r  initiaily elastic response 

and Y ( o )  = A + B while the minimum 

V e 

e = E 1J i j  

i j  'J 

Next w-e need to consider the cri terion of incipient fracture.  

We shall  define fracture  to s t a r t  when the s t ra in  a t  the tip reaches a 

cr i t ical  value [ 9, 10, 11 ] . This condition, known alternately as  the 

cr i t ical  c rack  opening o r  displacement cr i ter ion,  is a sufficient 

cr i ter ion for f rac ture  initiation, although, as pointed out ea r l i e r ,  

i t  is not a sufficient cri terion for catastrophic failure in viscoelastic 

mater ia ls .  

Olesiak and Wnuk 213) and for simple viscoelastic mater ia l s  by 

Williams [ 141 . 

It has  been used for metals  by Goodier and Field r121 and 

*Non-linear in the chemical sense  of "un-crosslinked". 
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THE STRESS AND STRALN DISTRIBUTION AROUND THE CRACK 

Consider the axisymmetr ic  geometry in Figure 1. The c rack  

proper  extends over the domain 0 d r ,< P while the viscoplastic 

mater ia l  is contained in a Dugdale wedge [ 5 ]  in the ring 1 d r S aft). 

Our immediate aim is to determine the displacement w normal  to the 

crack plane a t  the crack end r = 1 .  
t 

The problem of a growing crack  in a viscoelastic medium ’31 

that of a crack of constant length but subjected to a time variation in 

loading cannot, in general ,  be treated by the correspondence princi- 

ple. Fo r  one important case,  however, when the loading increases  

monotonically with t ime, Graham [ 151 has shown that the distribution 

of s t r e s s e s  and s t ra ins  around a c rack  can be found by an extended 

correspondence principle. His  resu l t  for the normal  displacement w 

in the c rack  plane z = 0, 

can be writ ten as  

Her.e, wo(p, t )  is the short  t ime o r  glassy elastic solution, p ( p ,  t )  is 

the g r e s e u r e  applied at the crack surface 0 S r S  a f t )  (including the 

zones of plastic deformation), and K(t) is defined as [15 
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stars denoting Laplace t ransformed quantities and L-' denoting the 

inverse  of the Laplace t ransform.  

shown to be t rue  for all components of displacement and s t ra in  tensors  

while the s t r e s s e s  a r e  the same  as in an elastic solid. 

Formulae of the same type a r e  

If one deals  with viscoelastic behavior responses near  the 

extremes of the spectrum and avoids the intermediate transition 

range, Poisson ' s  ra t io  v can be assumed near ly  constant*. .Then 

relation (6) simplifies to 

K(t)  = 2(1- V )  D(t)  

D(t) being the c reep  compliance. 

Before recording the expression for the s t r e s s e s ,  i t  is 

appropriate to discuss  the t ime dependence of the s t r e s s  field f rom 

a physical viewpoint as it arises out of the t ime dependence of the 

mater ia l  yielding a t  the c rack  tip. 

initially a domain of yield, the s i ze  of which is determined by the 

Under step loading there  exists 

yield value Y ( o ) ,  and the s t r e s s  distribution corresponds to that ob- 

tained for the elastic-plastic case  [ 131.  

s t r e s s  in the vici&ty of L d r is indicated in Figure 2. a. 

ing c reep  increases  the function x and causes the value of the 

The distribution of the oZ 

The ensu- 

*This res t r ic t ion is not ve ry  severe ;  it allows dealing with hard 
polymers on the one hand and with soft rubbery ones on the other. 
in orde r  to simplify analyses v is often assunned constant over the 
f u l l  t ime range. 
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subsequent yield s t r e s s  to drop* and consequently the s ize  of the 

plastic zone to increase.  

mental p rocess  giving r i s e  to a s ta i r - s tep  like function of Figure 2b, 

This may be viewed as a discrete ,  incre-  

and in the l imit  of many such increments a s  the continuous s t r e s s  

distribution in the same figure. Whether the actual s t r e s s  distribu- 

tion i s  like the one envisaged is not c lear ;  nevertheless,  the process  

described is consistent with the assumed model of t ime dependent 

plasticity. 

It turns out that the process  just  described leads to intractable 

mathematics and we shall  therefore introduce a further simplification 

and represent  the s t r e s s  distribution in the yielded zone by a t ime 

dependent average ( Y ( t ) )  which is  constant over the domain 1 S r S a ( t )  

a s  indicated in Figure 2c. Let this average be given by 

P 

where Y(t) i s  evaluated for the s t ra ins  at v = a( t ) .  With this physical 

clarification in mind we may now use  the resul ts  obtained by Olesiak 

and Wnuk [ 1 3 ]  and wri te  down the s t r e s s e s  immediately. We shall  

do this for the case  when the load is applied as a tensile s t r e s s  at  

z -m. ** 1 Let p = ri/r e ,  m(t) = ,t/a(t), K = 2 ( 1 - 2 v )  ( l + v ) ,  k ( t )  = P(t) / (Y(t))  

We have then (cf. ref. 10) 

*The associated unloading poses no difficulty in the formulation of the 
viscoelasticity problem. 

**The case  where the load i s  applied as a p res su re  a t  the wall surface 
is treated in detail  in ref. [16]. 

-7- 



u = o  z 

U = p(t) ( K - 1 )  r 

u = -p(t)  (2 t K )  

O S p G m  

1 

2( y >  - 1  1 - 1  (p;-rn;)] 

(2 + sin -m 
0 = - [zh - sin 

z ll 2 

It c a n  be observed that the stresses  pass through a discontinuity at 

p = m. 

is related to the (non-dimensional) load parameter [ 1 3  ) A ( t )  = p(t)/( Y ( t ) )  

It should also be noted that the outer radius of the plastic zone 

by 
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The yield value ( Y ( t ) )  is as yet unknown; in order to d e t e r -  

mine it we need to calculate the s t ra ins  E a t  r = a ( t )  f rom the 

s t r e s s e s  (9 ) .  

out resor t ing to approximations, the rest r ic t ion that the yield stress 

is  much larger than the applied s t r a in  can simplify the analysis con- 

siderably. This simplification would be tantamount to ignoring the 

problem of general  yield emanating f rom the crack tip and consid- 

ering only limited yield pr ior  to f racture .  

s t r e s s e s  (9) a t  r = a ( t )  reduce to 

ij 
Although the following calculations a r c  possible with- 

Then A ( t )  << 1 and the 

while the corresponding short- t ime elastic s t r a in  E e a r e  
i j  

e 
E o  = 0 

Eg being the glassy o r  short- t ime modulus. 

The viscoelastic s t ra ins  at the tip of the plastic zone a re  

given by 
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and substitution of (12 

some manipulation as 

and (13)  into (3) renders  the function x after 

Here  we have defined the n o r m a l i d  c reep  compliance+(t) 

Recalling that 2( Y(t)) = Y(o) t Y ( t )  we can wr i te  now a non-linear 

integral  equation for Y(t) as 

K(t)/K(o). 

This expression can be reduced by two-fold differentiation to the non- 

l inear  differential equation 

W i t h  the definitions 

c y( t )  = Y(t) - A, a = 2 d% 

this equation simplifies to 

- 2  2 
Y - y y  = Y [P(t) 9 + ac t ) ]  
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EFFECT O F  TIME D E P E N D E N T  YIELD 

The solution of the non-linear differential equation ( I  7) valid 

for X <6 1 poses a formidable task for general  mater ia l  propert ies  

P(t) and Q( t ) ,  and must  be accomplished, in general ,  numerically. 

In one special, s imple caee however, the solution can be obtained 

analytically and in closed f ~ r m ,  namely when the bulk mater ia l  be- 

haves as a Maxwell solid. 

constant (viscosity), one has  f r o m  (7)  

In this ca se  D( t )  = D ( o )  t qt, q being a 

Equation (17) reduces then to 

where I = K(o)/q.  Noting that ( y  Y - ?)/Y 2 d  = dt (k/Y),equation (19) 
0 

' can  be integrated directly,  subject to the initial conditions of equa- 

tion (IS), 

Y(0') = A +  €3 

yo t 
q ( 0  ) = - aB(AtB) $(o) = - aB r 

0 

to give the average yield stress 
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It may be verified by substitution of the definitions . 

B 
2A+ B 

p = -- 

c = a C(2Ai-B) =: (2Ai-B) 

that (20)  is reduced to 

Equation (21) gives the average s t r e s s  in the plastic zone surrounding 

the penny-shaped crack. Figure 3 shows the decay of the s t r e s s  in 

the plastic zone. F o r  the mater ia l  parameters  we have chosen* 

A = 100 psi ,  B = 25 psi ,  C = 400, v = 0. 3; the three values of c ,  

1 Q c S 1 0  correspond to a range of Young's modulus of 5x10 

5 5x10 psi. 

I 4 
G E S 

Although the effect of C on the plastic relaxation is consider- 

able, the same  is not t rue  when one considers the displacement 

growth at  the tip of the crack. 

that the displacement w(1, t )  a t  the tip of the c rack  ( p  = 1)  for s tep  

Following [ 13 3 i t  can be readily shown 

loading p( t )  = pol ( t )  is given by 

t 

0 
w(1, t )  w,(t) = w(o) [ $(t) t. 4 (7) @(t -7 ) d7 1 (22) 

*These values were  taken f r o m  reference 1173.  Although they have 
d i rec t  pract ical  significance only for the filled polymer for which they 
w e r e  obtained, these values a r e  physically not without meaning. In 
the absence of information on viscoplastic mater ia l  propert ies ,  they 
are m o r e  significant than a mere guess. 
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Substitution of @(t), equation (211, renders  for the Maxwell solid, 

This relation is i l lustrated in Figure 4 and it  is seen that the dis -  

placement is considerably l e s s  sensit ive to variations in c than the 

yield s t r e s s .  

It should now be recalled that we adopted from the beginning 

a s t ra in  o r  displacement cr i ter ion of failure initiation. According to 

that cr i ter ion,  c rack  propagation s t a r t s  when the c rack  tip displace- 

ment w ( t )  reaches the cr i t ical  value w* a t  t ime t*, i. e. , when 
0 

wo(t*) = w* (24) 

The time to failure is then obtained implicitly f rom (23) upon sub- 

s tituting (24) 

0' 
To re la te  w*/w(o) to the load p in a simple way le t  y = w:kY 

0 

It has been shown in [18] that this is equal to the plasiticity parameter  

in the Orowan-Irwin theory of f rac ture  

ductility. Fur thermore ,  let: 

2 - n E g  Y(o)w* - nEgy 
2 2 

- 
211 - v )rn 

- 
pg 2(1 - u )I 

under l imited,  time-independent 

denote the Griffith s t r e s s  p 

application in a bri t t le  manner and without time delay. 

to cause f rac ture  propagation upon load 
@; 

Upon using 
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the definition of w(o) following equation (22) and the definition ( 2 6 ) ,  

equation (25) may be rewrit ten as 

5 = 1 t (1 i. p) 7 t* 4. p(1 - ;) 1 [ l  - exp ( - ~ t * / 7 ~ ) ]  
pg 0 

This  relation between the t ime to initiate f rac ture  and the applied 

load is shown in Figure 5 as t r ace  1 .  Shown in the same figure is 

the resu l t  for constant, ra ther  than t ime dependent, yield, t r ace  2 

and 3 corresponding to yield s t r e s s e s  a t  aero and infinite t ime r e -  

spectively, 

t ime accelerates  the deformation a t  the c rack  tip and causes ear l ie r  

failure than would be t rue  i f  the initial yield s t r e s s  were  maintained. 

Thus a f rac ture  p'rediction is conservative only i f  i t  is based on the 

constant, long t ime yield s t r e s s  Y ( a 0 )  in which case  one has  

It is c lear  then that the dec rease  in yield s t r e s s  with 

W e  have now investigated the inception of f rac ture  propagation 

in the presence of limited time dependent plasticity. 

m o r e  real is t ic  mater ia l  propert ies  could lead to different numerical  

resul ts  the qualitative behavior would probably be the same. 

of the rest r ic t ions imposed by the simple m t e r i a l  representation, 

i t  appears that t ime dependent plasticity does not lead to gross  devi- 

ations f rom what holds t rue  for time-independent plastic behavior. 

With'this qualitative feeling as an incentive we shal l  now consider the 

time-dependence of the f rac ture  process  in the presence  of time- 

independent yield, but for m o r e  general  viscoelastic behavior o f  the 

unyielded mater ia l  than a simple Maxwell model. 

Although use  of 

In spite 
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DELAYED FRACTURE FOR TLME-INDEPENDENT YIELD 

The 6 implification of t ime - ind spendent yield proper t ies 

eliminates the necessity of solving the non-linear differential equa- 

tion ( 1 7 )  and allows therefore a m o r e  general  representation €or 

the bulk of the material .  Fur thermore ,  we need not necessar i ly  

r e s t r i c t  ourselves to low values of A. 

to determine the t imes of incipient crack propagation a r e  so simple 

The resulting expressions 

that their usefulness in applications may benefit from this sim2licity 

m o r e  than they may suffer f rom their  lack of a complete mater ia l  

r eg res  entation. 

The normal  crack surface displacement w(t)  a t  p = 1 is ob- 

tained from equation (5) af ter  substituting the elastic solution [ l 3  ] 

The resul t  is, with A(t) = P(t)/Yo, 

w(t)  = w(1, t )  = 
1 

1-tl-A2(t$ 

2 
4 ( 1 - ~  ) l Y o  

7rE 
g 

Let  w* be the value of w(t)  at the time of failure t*; fur thermore,  

define 112, 191 

y 3  w*Yo 

* Then (30) may be written as 
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which re la tes  the load history h ( t )  to the failure t ime t*. Note that 

thkre exists a minimum crack size  m i n i l )  = l *  below which the 

applied load p( t )  would have to exceed the yield s t r e s s  to cause failure. 

The s ize  of I * is given by the condition that p E Yo, so that 
g 

nE w* 

2 
-A - "EgY 

2(1-u )Yo Z ( 1 - v  )Yo 2 2  
/ *  = 

For  cracks of initial length 1 6  1 * general  yield will therefore  occur 

ra ther  than c rack  growth. 

Fo r  a step load p( t )  = pol (t) equation (31) becomes, with 

A o = p  Y 
0 0  

If we define the inverse function of 

one may wri te  th,e t ime of instability t* explicitly f rom (33) as 
2 

t* = 4J-1 [i($) 
1 2 $1 1 - (1 -Ao) 

(34)  

This t ime t* is a furiction of the c rack  s ize  through (p /Yo)2  and of 

the applied load through Xo = po/Yo as , long as P > P *, no restr ic t ions 

being placed on the s ize  of the plastic zones a t  the c rack  periphery. 

8 

The function 4J-l is zero  for arguments l e s s  than or equal to unity. 
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Hence instantaneous fracture  ensues if  - 

On the other hand, i f  the r e v e r s e  is t rue,  i. e . ,  i f  

1 

L ( g  > l - ( l - X o )  2 2  
2 

0 

then t* is grea te r  than zero which means that some time will pass  

af ter  load application before the crack s t a r t s  to propagate. 

i l lustrative purposes we show in Figure 6 the time to failure of a 

Maxwell solid and a standard l inear solid. 

l a rge r  cracks is clearly i l lustrated.  

For  

The weakening effect of 

If a crack is very much l a rge r  than the minimum s ize  P 

f racture  occurs  a t  low load levels Xo = po/Yo << 1 and equation ( 3 1 )  

may be written m o r e  simply as 

2 t* ($f! = A2(t*) t & ( T )  X (t*-T) d 7  
0 

( 3 7 )  

2 By multiplying bath sides  of this equation by Y the yield s t r e s s  
0 

vanishes from the equation. Therefore,  the f racture  resulting from 

la rge  cracks a t  low load levels i s  nearly independent of the yield 

process  a t  the tip of the crack. 

the rate-insensit ive metals  [18,20 ) . 
step-loading p( t )  = po 1 (t) one obtains then the simple resul t  

This resul t  is well recognized for 

For  the particular case  of 

-3 

(: j = 

which equation yields immediate failure initiation (t*=o) i f  p 

and predicts infinite failure t ime when (p /p ) 

- 
0 - p g  

2 
= +fa>). It follows 

8 0  
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that i f  +(t)  is bounded a t  infinity there  .exists a lower limit on p 

which no crack propagation occurs .  

below 
0 

This lower l imit  is 

where E 

bounded, i. e . ,  i f  E = 0, then such a l imit  does not exist  and f rac ture  

may always occur after long t imes.  

is the long-time equilibrium modulus. If $(?) is not e 

e 

It should be noted, with a view toward applications of (38)  that 

one need not know the value of p 

mater ia l s  containing a c rack  (or  severa l  non-interacting c racks )  of 

Suppose one conducts tes ts  on 
g' 

s i ze  P 

tion (38) can then be written as 

and finds that a load pol produces failure in time t*. Equa- 
1 l 

and for any other load and crack  s ize  as 

Division of (40a) by (40b) renders  

which equation would permi t  simple extrapolation of a minimum of 

experimental  data to other loads and crack  s izes .  

Inasmuch as equations (37 )  and (38 )  do not contain the yield 

s t r e s s  they may be also applied to  mater ia l s  which do not exhibit 

yield-like behavior provided the applied stresses a re  small COM- 

pared %o the intrinsic molecular s t r e n g h  of the mater ia l  [ 18,201 , 
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This equation is also represented in Figure 7 for Solithane 11 3 (50/50). 

In concluding this discussion of f racture  initiation in visco- 

elastic mater ia ls  f rom a penny-shaped crack we comment on the 

failure behavior in two-dimensional s t r e s s  fields. It can be shown 

in a straightforward manner that for two-dimensional geometries 

the previous calculations follow through to give resul ts  which differ 

only in detail f rom those presented here. Indeed, equations (38-41) 

a r e  identical. A m o r e  detailed comparibon of the L o  and three- 

dimensional is presented in reference [ 1 5 1  . Similarly, the reader  

m a y  refer  to [ 151 for a discussion on the effect of a temperature and 

r a t e  sensitive cr i t ical  s t ra in  or  displacement w* a t  the tip of the 
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